Acta Cryst. (1973). B29, 1733
The crystal and molecular structure of barium nitroprusside dihydrate. By A. H. Lanfranconi,* A. G. Alvarez \dagger and E. E. Castellano, \dagger Departmento de Fisica, Universidad Nacional de La Plata, La Plata, Argentina
(Received 28 December 1972; accepted 16 March 1973)

Barium nitroprusside dihydrate crystallizes in space group $P c a 2_{1}$ with $a=19.471$ (20), $b=7.631$ (20), $c=$ $8 \cdot 609$ (20) $\AA, Z=4$. The structure was solved by the heavy-atom method and refined by least squares. The $\left[\mathrm{Fe}(\mathrm{CN})_{s} \mathrm{NO}\right]^{2-}$ ions are highly distorted octahedra with $\mathrm{Fe}-\mathrm{N}=1.705 \AA$ and $\mathrm{Fe}-\mathrm{C}=1.91 \AA$ (mean value).

The crystal and molecular structure of barium nitroprusside dihydrate, $\mathrm{Ba}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right] .2 \mathrm{H}_{2} \mathrm{O}$, has been determined to assist in the interpretation of its single-crystal infrared spectrum (Varetti \& Aymonino, 1973).

The crystals, which were obtained by evaporation from aqueous solution at ambient temperature, are orthorhombic with the following crystallographic constants:

$$
\begin{array}{ll}
a=19 \cdot 471(20) \AA & d_{o}=2.03 \mathrm{~g} \mathrm{~cm}^{-3} \\
b=7.631(20) & d_{c}=2.04 \\
c=8.609(20) & Z=4 \\
\mathrm{Cu} K \alpha_{1} \lambda=1 \cdot 5405 \AA & \text { Space group: } P c a 2_{1}
\end{array}
$$

1029 reflexions were assigned non-zero intensities by visual estimation of equi-inclination Weissenberg photographs of the $h k 0-8$ layers. The intensities were corrected for Lorentz and polarization effects, but not for absorption or extinction. The barium and iron atoms were located from a Patterson map. Three successive Fourier synthesis showed reasonable positions for the cation and for the atoms of the anion, and also two ill-defined further peaks. A difference map in which these peaks were not included showed them clearly to be the two water molecules of crystallization.
Seven cycles of least-squares refinement with isotropic thermal factors gave a final R of $0 \cdot 141$. The final atomic coordinates and temperature factors are given in Table 1, the distances and angles in the nitroprusside ion in Table 2, and the coordination distances in Table 3. Table 4 lists the observed and calculated structure factors. The contents of the unit cell are shown in projection down \mathbf{c} in Fig. 1.

[^0]

Fig. 1. Projection of the structure down c. Primed numbers denote atoms with coordinates $z-\frac{1}{2}$. Broken lines represent presumed hydrogen bonds, and arrows the coordination of water molecules.

Table 1. Final atomic parameters Positional parameters are $\times 10^{4}$.

	x / a	y / b	z/c	$B\left(\AA^{2}\right)$
$\mathrm{O}(1)$	2581 (11)	8900 (27)	1637 (54)	$1 \cdot 15$ (4)
$\mathrm{O}(2)$	3018 (16)	4634 (27)	1643 (75)	$2 \cdot 70$ (9)
O (3)	93 (26)	-250 (73)	- 352 (56)	4.27 (43)
N(4)	53 (18)	3299 (49)	1636 (99)	2.93 (10)
N(5)	2454 (17)	4540 (36)	1529 (40)	$1 \cdot 14$ (5)
N(6)	1583 (18)	1466 (51)	-898 (49)	1.76 (5)
N(7)	1323 (20)	6781 (49)	-654 (50)	3.57 (30)
N(8)	1567 (17)	1124 (47)	4121 (48)	1.69 (4)
N(9)	1279 (19)	6912 (50)	4211 (52)	3.87 (40)
C(10)	627 (16)	3647 (44)	1667 (52)	1.50 (9)
C(11)	1596 (21)	2440 (61)	73 (56)	1.49 (8)
C(12)	1411 (19)	5926 (47)	261 (48)	1.50 (8)
C(13)	1589 (22)	2243 (62)	3139 (61)	$2 \cdot 12$ (22)
C(14)	1378 (24)	6088 (59)	3251 (60)	2.66 (21)
Ba	3975 (1)	9284 (7)	1721 (15)	1.57 (8)
Fe	1597 (1)	4147 (7)	1764 (24)	1.61 (3)

Table 2. Distances and angles in the nitroprusside ion
$\mathrm{Fe}-\mathrm{N}(5)$
$\mathrm{Fe}-\mathrm{C}(10)$
$\mathrm{Fe}-\mathrm{C}(11)$
$\mathrm{Fe}-\mathrm{C}(12)$
$\mathrm{Fe}-\mathrm{C}(13)$
$\mathrm{Fe}-\mathrm{C}(14)$
$\mathrm{N}(5)-\mathrm{O}(2)$
$\mathrm{N}(4)-\mathrm{C}(10)$
$\mathrm{N}(6)-\mathrm{C}(11)$
$\mathrm{N}(7)-\mathrm{C}(12)$
$\mathrm{N}(8)-\mathrm{C}(13)$
$\mathrm{N}(9)-\mathrm{C}(14)$
$\mathrm{Fe}-\mathrm{N}(5)-\mathrm{O}(2)$
$\mathrm{Fe}-\mathrm{C}(10)-\mathrm{N}(4)$
$\mathrm{Fe}-\mathrm{C}(11)-\mathrm{N}(6)$
$\mathrm{Fe}-\mathrm{C}(12)-\mathrm{N}(7)$
$\mathrm{Fe}-\mathrm{C}(13)-\mathrm{N}(8)$
$\mathrm{Fe}-\mathrm{C}(14)-\mathrm{N}(9)$
$\mathrm{C}(10)-\mathrm{Fe}--\mathrm{C}(11)$
$\mathrm{C}(10)-\mathrm{Fe}-\mathrm{C}(12)$
$\mathrm{C}(10)-\mathrm{Fe}-\mathrm{C}(13)$
$\mathrm{C}(10)-\mathrm{Fe}-\mathrm{C}(14)$
$1.71(4) \AA$
$1 \cdot 92(3)$
$1 \cdot 95(4)$
$1 \cdot 88(4)$
$1 \cdot 88(6)$
$1.96(6)$
$1 \cdot 11(5)$
$1 \cdot 17(5)$
$1 \cdot 13(5)$
$1.09(6)$
$1 \cdot 21(7)$
$1 \cdot 13(9)$
$166(4)^{\circ}$
$176(5)$
$176(3)$
$174(4)$
$172(5)$
$170(6)$
$80(2)$
$85(2)$
$83(2)$
$89(2)$

Table 3. Coordination distances of the barium ion

$\mathrm{Ba}-\mathrm{O}(1)$	$2.73(2) \AA$
$\mathrm{Ba}-\mathrm{O}(3)$	$2.90(5)$
$\mathrm{Ba}-\mathrm{N}(6)$	$2.85(4)$
$\mathrm{Ba}-\mathrm{N}(7)$	$2.99(5)$
$\mathrm{Ba}-\mathrm{N}(8)$	$2.84(4)$
$\mathrm{Ba}-\mathrm{N}(9)$	$2.83(7)$

Table 4. Observed and calculated structure factors

Columns from left to right give $k, l, 10 F_{o}$, and $10 F_{c}$.

Table 5. Principal distances and angles involving the oxygen atoms of the water molecules

$\mathrm{N}(5)-\mathrm{O}(1)$	$3 \cdot 34(4) \AA$
$\mathrm{N}(8)-\mathrm{O}(1)$	$3 \cdot 19(5)$
$\mathrm{N}(4)-\mathrm{O}(3)$	$3 \cdot 20(7)$
$\mathrm{N}(7)-\mathrm{O}(3)$	$3 \cdot 27(7)$
$\mathrm{N}(8)-\mathrm{O}(1)-\mathrm{N}(5)$	$118(2)^{\circ}$
$\mathrm{N}(8)-\mathrm{O}(1)-\mathrm{Ba}$	$120(1)$
$\mathrm{N}(5)-\mathrm{O}(1)-\mathrm{Ba}$	$101(1)$
$\mathrm{N}(4)-\mathrm{O}(3)-\mathrm{N}(7)$	$130(2)$
$\mathrm{N}(4)-\mathrm{O}(3)-\mathrm{Ba}$	$123(2)$
$\mathrm{N}(7)-\mathrm{O}(3)-\mathrm{Ba}$	$141(2)$

The anion is in the form of a distorted octahedron elongated in the direction of the nitrosyl group. The iron atom is displaced from the best least-squares plane through $\mathrm{C}(11)$ to $\mathrm{C}(14)$ giving $\mathrm{N}(5)-\mathrm{Fe}-\mathrm{C}(j)$ angles ($j=11$ to 14) greater than 90°, as has been found in $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO} .2 \mathrm{H}_{2} \mathrm{O}$ (Manoharan \& Hamilton, 1963) and for the Mn atom in $\mathrm{K}_{3} \mathrm{Mn}(\mathrm{CN})_{5} \mathrm{NO} .2 \mathrm{H}_{2} \mathrm{O}$ (Tullberg \& Vannerberg, 1967). The observed deviation from the ideal point group $C_{4 v}$ is insignificant, and a non-crystallographic fourfold axis passes through $\mathrm{O}(2), \mathrm{N}(5), \mathrm{Fe}, \mathrm{C}(10)$ and $\mathrm{N}(4)$.

Each nitroprusside ion is coordinated to four barium ions through the nitrogens of the equatorial plane of the anion. Each barium ion is located at the centre of a very distorted octahedron formed by the oxygen atoms of the water molecules and the nitrogens of the neighbouring anions.

The configuration of the anion agrees with the model proposed by Ballhausen \& Gray (1963) in which the distorted octahedral complexes with tetragonal symmetry have strongly π-bonded axial substituents. The distances between the oxygen atoms of the water molecules and their neighbouring nitrogen atoms suggest the presence of weak hydrogen bonds (Table 5). The very high temperature factor found for $\mathrm{O}(3)$ is consistent with the abnormal $\mathrm{N}(7)-\mathrm{O}(3)-$ Ba angle and with the infrared spectrum which shows the two weak hydrogen bonds to be non-equivalent.

The authors wish to thank Dr E. L. Varetti, who supplied them with Fig. 1, and Dr P. J. Wheatley, who helped them in the presentation of this paper.

References

Ballhausen, C. J. \& Gray, H. B. (1963). Inorg. Chem. 2, 426-427.
Manoharan, P. T. \& Hamilton, W. C. (1963). Inorg. Chem. 2, 1043-1047.
Tullberg, A. \& Vannerberg, N. G. (1967). Acta Chem. Scand. 21, 1462-1472.
Varetti, E. L. \& Aymonino, P. J. (1973). Polarized and Low Temperature Infrared Spectra of Barium Nitroprusside Dihydrate. To be published.

[^0]: * Supported by the Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina.
 \dagger Members of Carrera del Investigador Cientifico, Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina.

